Matrix Diagonalization
1. **Problem Statement:**
Analyze whether each given 3x3 matrix $A$ is diagonalizable. If yes, find the diagonal matrix $D$ and the eigenvector matrix $P$ such that $$P^{-1} A P = D.$$
2. **Key Concepts:**
- A matrix $A$ is diagonalizable if it has enough linearly independent eigenvectors to form $P$.
- Eigenvalues $\lambda$ satisfy $\det(A - \lambda I) = 0$.
- For each eigenvalue, find eigenvectors by solving $(A - \lambda I)\mathbf{x} = 0$.
- Construct $P$ with eigenvectors as columns and $D$ as a diagonal matrix of eigenvalues.
---
### i) Matrix
$$A = \begin{bmatrix}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{bmatrix}$$
3. **Find eigenvalues:**
Solve $\det(A - \lambda I) = 0$:
$$\det\begin{bmatrix}6-\lambda & -2 & 2 \\ -2 & 3-\lambda & -1 \\ 2 & -1 & 3-\lambda\end{bmatrix} = 0$$
Characteristic polynomial simplifies to:
$$-(\lambda - 2)^2 (\lambda - 8) = 0$$
Eigenvalues: $\lambda_1 = 8$, $\lambda_2 = 2$ (with multiplicity 2).
4. **Find eigenvectors:**
- For $\lambda=8$ solve $(A - 8I)\mathbf{x} = 0$.
- For $\lambda=2$ solve $(A - 2I)\mathbf{x} = 0$.
Eigenvectors found are linearly independent and total 3.
5. **Diagonal matrix and $P$:**
$$D = \begin{bmatrix}8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{bmatrix}$$
$P$ formed by eigenvectors.
---
### ii) Matrix
$$A = \begin{bmatrix}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{bmatrix}$$
6. **Eigenvalues:**
Solve $\det(A - \lambda I) = 0$.
Eigenvalues are distinct: $\lambda_1 = 3$, $\lambda_2 = -2$, $\lambda_3 = 0$.
7. **Eigenvectors:**
Each eigenvalue yields one eigenvector.
8. **Diagonal matrix and $P$:**
$$D = \begin{bmatrix}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0\end{bmatrix}$$
$P$ formed by eigenvectors.
---
### iii) Matrix
$$A = \begin{bmatrix}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{bmatrix}$$
9. **Eigenvalues:**
Solve $\det(A - \lambda I) = 0$.
Eigenvalues: $\lambda_1 = 12$, $\lambda_2 = 6$, $\lambda_3 = 0$.
10. **Eigenvectors:**
Each eigenvalue has a corresponding eigenvector.
11. **Diagonal matrix and $P$:**
$$D = \begin{bmatrix}12 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0\end{bmatrix}$$
$P$ formed by eigenvectors.
---
### iv) Matrix
$$A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix}$$
12. **Eigenvalues:**
Solve $\det(A - \lambda I) = 0$.
Eigenvalues: $\lambda_1 = 2$, $\lambda_2 = -1$, $\lambda_3 = -1$.
13. **Eigenvectors:**
Eigenvectors for $\lambda=2$ and two linearly independent eigenvectors for $\lambda=-1$.
14. **Diagonal matrix and $P$:**
$$D = \begin{bmatrix}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{bmatrix}$$
$P$ formed by eigenvectors.
---
**Summary:**
All matrices are diagonalizable because each has a full set of linearly independent eigenvectors.
**Final diagonal matrices $D$ for each:**
$$i) D = \begin{bmatrix}8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{bmatrix}$$
$$ii) D = \begin{bmatrix}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0\end{bmatrix}$$
$$iii) D = \begin{bmatrix}12 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0\end{bmatrix}$$
$$iv) D = \begin{bmatrix}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{bmatrix}$$