Markowitz Portfolio
1. **Problem Statement:**
Chris wants to allocate between two risky portfolios (S&P fund and Hedge fund) and a risk-free asset. We need to find the optimal risky allocation, expected return, and risk of the combined portfolio, and then the complete portfolio considering risk aversion.
2. **Given Data:**
- S&P fund risk premium $\mu_1 = 0.05$, standard deviation $\sigma_1 = 0.20$
- Hedge fund risk premium $\mu_2 = 0.10$, standard deviation $\sigma_2 = 0.35$
- Risk-free rate $r_f = 0.01$
- Correlation $\rho = 0.3$
- Risk aversion $A = 3$
3. **Formulas and Rules:**
- Covariance $\sigma_{12} = \rho \sigma_1 \sigma_2$
- Covariance matrix $\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$
- Expected returns vector $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$
- Optimal risky portfolio weights $w^* = \frac{1}{A} \Sigma^{-1} \mu$
- Expected portfolio return $\mu_p = w^{*T} \mu$
- Portfolio variance $\sigma_p^2 = w^{*T} \Sigma w^*$
- Capital allocation to risky portfolio $y = \frac{\mu_p}{A \sigma_p^2}$
- Complete portfolio expected return $E[R_c] = r_f + y (\mu_p)$
- Complete portfolio standard deviation $\sigma_c = y \sigma_p$
4. **Step-by-step Solution:**
**(a) Optimal risky allocation $w^*$:**
- Calculate covariance $\sigma_{12} = 0.3 \times 0.20 \times 0.35 = 0.021$
- Covariance matrix:
$$\Sigma = \begin{bmatrix} 0.20^2 & 0.021 \\ 0.021 & 0.35^2 \end{bmatrix} = \begin{bmatrix} 0.04 & 0.021 \\ 0.021 & 0.1225 \end{bmatrix}$$
- Inverse of $\Sigma$:
Calculate determinant:
$$det = 0.04 \times 0.1225 - 0.021^2 = 0.0049 - 0.000441 = 0.004459$$
$$\Sigma^{-1} = \frac{1}{det} \begin{bmatrix} 0.1225 & -0.021 \\ -0.021 & 0.04 \end{bmatrix} = \begin{bmatrix} 27.46 & -4.71 \\ -4.71 & 8.97 \end{bmatrix}$$
- Expected returns vector:
$$\mu = \begin{bmatrix} 0.05 \\ 0.10 \end{bmatrix}$$
- Compute $w^* = \frac{1}{A} \Sigma^{-1} \mu$ with $A=1$ for optimal risky portfolio weights (before considering risk aversion):
$$w^* = \Sigma^{-1} \mu = \begin{bmatrix} 27.46 & -4.71 \\ -4.71 & 8.97 \end{bmatrix} \begin{bmatrix} 0.05 \\ 0.10 \end{bmatrix} = \begin{bmatrix} 27.46 \times 0.05 + (-4.71) \times 0.10 \\ -4.71 \times 0.05 + 8.97 \times 0.10 \end{bmatrix} = \begin{bmatrix} 1.373 - 0.471 \\ -0.2355 + 0.897 \end{bmatrix} = \begin{bmatrix} 0.902 \\ 0.6615 \end{bmatrix}$$
- Normalize weights to sum to 1:
$$w_{sum} = 0.902 + 0.6615 = 1.5635$$
$$w = \begin{bmatrix} \frac{0.902}{1.5635} \\ \frac{0.6615}{1.5635} \end{bmatrix} = \begin{bmatrix} 0.577 \\ 0.423 \end{bmatrix}$$
**Answer (a):** Optimal risky allocation is approximately 57.7% in S&P fund and 42.3% in Hedge fund.
**(b) Expected risk premium and standard deviation of portfolio:**
- Expected risk premium:
$$\mu_p = w^T \mu = 0.577 \times 0.05 + 0.423 \times 0.10 = 0.02885 + 0.0423 = 0.07115$$
- Portfolio variance:
$$\sigma_p^2 = w^T \Sigma w = \begin{bmatrix} 0.577 & 0.423 \end{bmatrix} \begin{bmatrix} 0.04 & 0.021 \\ 0.021 & 0.1225 \end{bmatrix} \begin{bmatrix} 0.577 \\ 0.423 \end{bmatrix}$$
Calculate intermediate:
$$\Sigma w = \begin{bmatrix} 0.04 \times 0.577 + 0.021 \times 0.423 \\ 0.021 \times 0.577 + 0.1225 \times 0.423 \end{bmatrix} = \begin{bmatrix} 0.02308 + 0.00888 \\ 0.01212 + 0.05182 \end{bmatrix} = \begin{bmatrix} 0.03196 \\ 0.06394 \end{bmatrix}$$
Then:
$$w^T (\Sigma w) = 0.577 \times 0.03196 + 0.423 \times 0.06394 = 0.01844 + 0.02706 = 0.0455$$
- Standard deviation:
$$\sigma_p = \sqrt{0.0455} = 0.2134$$
**Answer (b):** Expected risk premium is approximately 7.12% and standard deviation is approximately 21.3%.
**(c) Capital allocation to risky portfolio and risk-free asset with $A=3$:**
- Capital allocation to risky portfolio:
$$y = \frac{\mu_p}{A \sigma_p^2} = \frac{0.07115}{3 \times 0.0455} = \frac{0.07115}{0.1365} = 0.521$$
- Capital allocation to risk-free asset:
$$1 - y = 1 - 0.521 = 0.479$$
**Answer (c):** Chris should allocate approximately 52.1% to the risky portfolio and 47.9% to the risk-free asset.
**(d) Expected return and standard deviation of complete portfolio:**
- Expected return:
$$E[R_c] = r_f + y \mu_p = 0.01 + 0.521 \times 0.07115 = 0.01 + 0.0371 = 0.0471$$
- Standard deviation:
$$\sigma_c = y \sigma_p = 0.521 \times 0.2134 = 0.1112$$
**Answer (d):** Expected return is approximately 4.71% and standard deviation is approximately 11.1%.