Linear Regression F4B127
1. **Problem Statement:**
We have data for $C_t$ and $Y_t$ and want to estimate the parameters $\beta_1$ and $\beta_2$ in the linear regression model:
$$ C_t = \beta_1 + \beta_2 Y_t + u_t $$
2. **Normal Equations:**
The normal equations for OLS estimation are:
$$ X' y = X' X \beta $$
where $X$ is the design matrix with a column of ones and a column of $Y_t$, and $y$ is the vector of $C_t$ values.
3. **Constructing Matrices:**
Let $n=15$ be the number of observations.
$$ X = \begin{bmatrix} 1 & 13.0 \\ 1 & 13.2 \\ \vdots & \vdots \\ 1 & 15.0 \end{bmatrix}, \quad y = \begin{bmatrix} 20.2 \\ 20.4 \\ \vdots \\ 21.8 \end{bmatrix} $$
4. **Calculate sums:**
$$ \sum Y_t = 213.2, \quad \sum C_t = 318.7, \quad \sum Y_t^2 = 3033.66, \quad \sum Y_t C_t = 4535.06 $$
5. **Form $X'X$ and $X'y$:**
$$ X'X = \begin{bmatrix} n & \sum Y_t \\ \sum Y_t & \sum Y_t^2 \end{bmatrix} = \begin{bmatrix} 15 & 213.2 \\ 213.2 & 3033.66 \end{bmatrix} $$
$$ X'y = \begin{bmatrix} \sum C_t \\ \sum Y_t C_t \end{bmatrix} = \begin{bmatrix} 318.7 \\ 4535.06 \end{bmatrix} $$
6. **Solve for $\beta$:**
$$ \beta = (X'X)^{-1} X'y $$
Calculate determinant:
$$ \det = 15 \times 3033.66 - 213.2^2 = 45504.9 - 45444.2 = 60.7 $$
Inverse:
$$ (X'X)^{-1} = \frac{1}{60.7} \begin{bmatrix} 3033.66 & -213.2 \\ -213.2 & 15 \end{bmatrix} $$
Multiply:
$$ \beta = \frac{1}{60.7} \begin{bmatrix} 3033.66 & -213.2 \\ -213.2 & 15 \end{bmatrix} \begin{bmatrix} 318.7 \\ 4535.06 \end{bmatrix} = \frac{1}{60.7} \begin{bmatrix} 3033.66 \times 318.7 - 213.2 \times 4535.06 \\ -213.2 \times 318.7 + 15 \times 4535.06 \end{bmatrix} $$
Calculate numerator:
$$ \begin{cases} 966,497.5 - 966,497.5 = 0 \\ -67,956.8 + 68,025.9 = 69.1 \end{cases} $$
So:
$$ \beta_1 = 0/60.7 = 0, \quad \beta_2 = 69.1/60.7 \approx 1.139 $$
7. **Calculate residuals and estimate variance:**
Predicted $C_t$:
$$ \hat{C}_t = 0 + 1.139 Y_t $$
Calculate residuals $u_t = C_t - \hat{C}_t$ and residual sum of squares $RSS$.
8. **Estimate variance of residuals:**
$$ \hat{\sigma}_u^2 = \frac{RSS}{n-2} $$
9. **Calculate standard errors:**
$$ \hat{\sigma}_{\beta_k} = \hat{\sigma}_u \sqrt{(X'X)^{-1}_{kk}} $$
where $(X'X)^{-1}_{11} = 3033.66/60.7 \approx 50.0$ and $(X'X)^{-1}_{22} = 15/60.7 \approx 0.247$.
**Final answers:**
$$ \hat{\beta}_1 = 0, \quad \hat{\beta}_2 \approx 1.139 $$
Standard errors depend on $\hat{\sigma}_u$ computed from residuals.