Bucket Sort Time F7A3F9
1. **Problem Statement:** We have $n$ items to sort using BucketSort with $k = \frac{n}{\log \log n}$ buckets. The input distribution is non-uniform: half the items are uniformly distributed in $[0, \frac{1}{3}]$ and the other half in $(\frac{1}{3}, 1]$. We use heap-sort to sort items within each bucket. We want to find the expected running time.
2. **Recall BucketSort running time:**
- BucketSort distributes $n$ items into $k$ buckets.
- Expected time to distribute is $O(n)$.
- Sorting each bucket takes time depending on the number of items in that bucket.
- Total time is $O(n + \sum_{i=1}^k T_i)$ where $T_i$ is the time to sort bucket $i$.
3. **Key insight:**
- If items are uniformly distributed, each bucket gets about $\frac{n}{k}$ items.
- Sorting each bucket with heap-sort takes $O(m_i \log m_i)$ where $m_i$ is the number of items in bucket $i$.
- Total sorting time is $\sum_{i=1}^k O(m_i \log m_i)$.
4. **Distribution of items:**
- Half the items ($\frac{n}{2}$) lie in $[0, \frac{1}{3}]$.
- Half the items ($\frac{n}{2}$) lie in $(\frac{1}{3}, 1]$.
5. **Buckets and intervals:**
- Buckets are evenly spaced over $[0,1]$.
- Number of buckets: $k = \frac{n}{\log \log n}$.
- Bucket width: $\frac{1}{k} = \frac{\log \log n}{n}$.
6. **Buckets in $[0, \frac{1}{3}]$:**
- Number of buckets in this interval: approximately $\frac{1/3}{1/k} = \frac{k}{3} = \frac{n}{3 \log \log n}$.
- Items in this interval: $\frac{n}{2}$.
- Average items per bucket here: $\frac{n/2}{k/3} = \frac{n/2}{n/(3 \log \log n)} = \frac{3}{2} \log \log n$.
7. **Buckets in $(\frac{1}{3},1]$:**
- Number of buckets: $k - \frac{k}{3} = \frac{2k}{3} = \frac{2n}{3 \log \log n}$.
- Items: $\frac{n}{2}$.
- Average items per bucket: $\frac{n/2}{2k/3} = \frac{n/2}{2n/(3 \log \log n)} = \frac{3}{4} \log \log n$.
8. **Sorting time per bucket:**
- Using heap-sort, sorting $m$ items takes $O(m \log m)$.
- For buckets in $[0, \frac{1}{3}]$, sorting time per bucket is $O(\log \log n \cdot \log(\log \log n))$.
- For buckets in $(\frac{1}{3},1]$, sorting time per bucket is $O(\log \log n \cdot \log(\log \log n))$ as well.
9. **Total sorting time:**
- Number of buckets in $[0, \frac{1}{3}]$ is $\frac{k}{3} = \frac{n}{3 \log \log n}$.
- Number of buckets in $(\frac{1}{3},1]$ is $\frac{2k}{3} = \frac{2n}{3 \log \log n}$.
- Total sorting time:
$$
\frac{n}{3 \log \log n} \cdot O(\log \log n \cdot \log(\log \log n)) + \frac{2n}{3 \log \log n} \cdot O(\log \log n \cdot \log(\log \log n)) = O(n \log(\log \log n))
$$
10. **Total expected running time:**
- Distribution time: $O(n)$.
- Sorting time: $O(n \log(\log \log n))$.
- Since $\log(\log \log n)$ grows very slowly, the dominant term is $O(n \log(\log \log n))$.
11. **Matching with options:**
- None of the options explicitly list $\theta(n \log(\log \log n))$.
- The closest is option (i) $\theta(n \log \log \log n)$ which matches the derived complexity.
**Final answer:** (i) $\theta(n \log \log \log n)$